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EQUILIBRIUM OF A FREE NONISOTHERMAL LIQUID FILM

UDC 532.516V. V. Pukhnachev

The equilibrium of a free weightless liquid film fixed over a planar contour and acted upon by thermo-
capillary forces is studied. Trends in the behavior of free liquid films are important for understanding
the processes occurring in foams. The equilibrium equations for a nonisothermal weightless free film
are derived for the two limiting cases: the temperature of the film is considered a known function of
the coordinates; the free surface of the film is thermally insulated. For the plane and axisymmetric
cases, the existence conditions for the solutions of the resulting nonlinear boundary-value problems
are found and their properties are studied. For the general case, an approximate solution of the
equilibrium problem is obtained provided that the analogue of the Marangoni number is small.

Key words: free surface, thermocapillary effect, long-wave approximation, stationary solutions.

1. Formulation of the Problem. Let a viscous incompressible liquid fill a layer Ω whose upper and
lower boundaries Γ+ and Γ− are free and whose lateral surface is adjacent to a solid cylindrical surface Σ with
generatrices parallel to the x3 axis. Below, the following notation is used: x1, x2, and x3 are Cartesian coordinates,
v1, v2, and v3 are the corresponding velocity components, and p is the liquid pressure. The liquid density ρ, the
kinematic viscosity ν, and the thermal diffusivity χ are considered constant, and the surface-tension coefficient σ is
assumed to be a linear function of the temperature T :

σ = σ0 − κ(T − T0) (1.1)

(σ0, κ, and T0 are positive constants). Next, it is assumed that the liquid flow is stationary and symmetric about
the plane x3 = 0. In addition, it is assumed that surface-active substances and external mass forces are absent.

The mathematical problem consists of determining the region Ω and the solution of the system of the
Navier–Stokes and thermal-conductivity equations

v · ∇3v = −ρ−1∇3p + νΔ3v, ∇3 · v = 0; (1.2)

v · ∇3T = χΔ3T (1.3)

in this region subject to the free-boundary conditions

−pN + 2ρνD · N = −2KσN + ∇Γσ; (1.4)

v · N = 0, x ∈ Γ±, (1.5)

the no slip condition on the solid part of the boundary

v = 0, x ∈ Σ, (1.6)

the thermal-contact conditions formulated below, and symmetry conditions. The latter imply that the surface Γ− is
a reflection of Γ+ with respect to the plane x1, x2; in addition, the functions v1, v2, p, and T are even functions of
the variable x3, and v3 is an odd function of x3.
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In relations (1.2)–(1.5), ∇3 and Δ3 are the three-dimensional gradient and Laplacian, respectively, D =
[∇3v +(∇3v)∗]/2 is the strain rate tensor, N is the unit outward normal vector to the surface Γ+, K is the average
curvature of this surface; and ∇Γ = ∇− N(N · ∇ ) is the surface gradient.

If the quantity σ in condition (1.4) is constant, the dynamic problem (1.2), (1.4)–(1.6) is separated from the
thermal one and has a solution in which p = const, v = 0, and Γ+ is defined as the surface of specified constant
average curvature for a specified value of the contact angle. If σ �= const [which is inevitable at variable temperature,
by virtue of equality (1.1)], the problem is considerably complicated. Since the liquid is in contact with the solid
body along the surface Σ and with the gas phase at the points of the free boundary, additional boundary conditions
should be specified on the surfaces Σ and Γ+. We assume that the temperature or heat-flux distribution on the
surface Σ is known:

T = f(x) (x ∈ Σ) (1.7)

or ∂T

∂n
= q(x) (x ∈ Σ). (1.8)

Here f(x) and q(x) are specified functions and ∂/∂n is the derivative with respect to the direction of the outward
normal n to the surface Σ. As regards the condition of thermal contact of the film with the gas phase, it is usually
formulated as a condition of the 3rd kind for the temperature that includes an empirical constant (the interphase
heat exchange coefficient). It does not need to be determined in the two limiting cases: a thermally insulated free
boundary and ideal thermal contact of the liquid and gas phases. In the latter case, we assume that the free-surface
temperature θ is a specified function of the coordinates x1 and x2. After the substitution of equalities (1.1) and
T = θ for x ∈ Γ+ into condition (1.4), the problem of determining the functions v and p and the surface Γ+ becomes
closed and the function T in the region Ω is determined a posteriori.

If the free surface is thermally insulated, the condition for the temperature is written as

∂T

∂N
= 0 (x ∈ Γ+), (1.9)

where ∂/∂N is the derivative with respect to the direction of the outward normal to the surface Γ+. In this case,
if the problem is closed by condition (1.8), the function q(x) entering this condition should be subjected to the
relation ∫

Σ

q dΣ = 0. (1.10)

In addition, it is necessary to specify the three-phase contact angle at the points of intersection of the surfaces Σ
and Γ+. We confine ourselves to the simple case where this angle is equal to π/2. In this case, the following the
relation holds:

∂h

∂n
= 0, x ∈ Σ. (1.11)

Here h is a function that specifies the free surface by means of the equality x3 = h(x1, x2). Finally, for the solution
to be uniquely determined, the volume of the region occupied by the liquid needs to be specified:∫

ω

h(x1, x2) dx1 dx2 = Q (1.12)

(ω is the section of the region Ω by the plane x3 = 0).
Thus, two problems with the unknown boundary are formulated for system (1.2), (1.3). In the first of these,

the boundary conditions have the form (1.4)–(1.7), (1.11), (1.12), and the values of the function T on the surface
Γ+ [only these values appear in condition (1.4)] are specified a priori:

T = θ(x1, x2) (x ∈ Γ+). (1.13)

Problem (1.1)–(1.7), (1.11)–(1.13) will be called problem A. In the second problem, the set of boundary conditions
is replaced by (1.4)–(1.6) and (1.8)–(1.12). This problem for system (1.2), (1.3) will be called problem B.

Generally, problems A and B can be solved only numerically. However, in the case where the film thickness
is much smaller than the diameter of the region ω and the derivatives of the required functions with respect to
the transverse coordinate x3 are much larger than their derivatives with respect to the longitudinal coordinates x1
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and x2, one can use the thin-layer approximation [1]. This simplifies the problem considerably but does not make
it trivial. The main simplification provided by this approximation is that the problem with the unknown boundary
becomes a problem in a fixed region.

2. Thin-Layer Approximation. We denote by l the diameter of the plane region ω and assume that for
(x1, x2) ∈ ω, the relations h = εl and |∇h| = O(ε) and lΔh = O(ε) are satisfied when ε → 0 (here and below, ∇ and
Δ are the gradient and Laplacian over the variables x1 and x2). We denote by δT the characteristic temperature
drop along the film and assume that the change in the surface-tension coefficient, which has order κδT , is much
smaller than its average value σ0 (this assumption is always valid for real thermocapillary flows). We assume that
κ δT/σ0 = O(ε2) as ε → 0.

The problems considered have two characteristic linear scales: longitudinal and transverse. Accordingly,
there are two velocity scales, the transverse scale being much smaller than the longitudinal scale v3(v2

1 + v2
2)−1/2 =

O(ε). The characteristic longitudinal velocity V can be estimated from the balance of the tangential stresses on
the free boundary by virtue of relations (1.4) and (1.1), whence follows V = εκ δT/(ρν). From the balance of the
normal stresses, the characteristic pressure is expressed as p̄ = εσ0/l. The natural length scale is the quantity l.

In relations (1.2)–(1.13), we transform to dimensionless variables using the formulas

x′
i =

x

l
, v′i =

vi

V
(i = 1, 2), x′

3 =
x3

εl
, v′3 =

v3

εV
, p′ =

p

p̄
, h′ =

h

εl
, T ′ =

T

δT
.

Below, the primes at the dimensionless variables are omitted. We assume that the required dimensionless functions
and their derivatives with respect to the dimensionless coordinates of the order of unity for ε → 0. In [1], asymptotic
simplification of the equations and initial and boundary conditions of the nonstationary analog of problem A was
performed based on the assumption of the existence of the finite positive limits

κ δT

ε2σ0
→ γ,

(κ δT )2

ερν2σ0
→ β at ε → 0.

As a result, an equation for the film thickness was derived, which in the stationary case becomes

∇ · (h∇Δh) = γΔθ. (2.1)

Equation (2.1) should be solved in the region ω ∈ R
2 subject to the following conditions on the boundary ∂ω of the

region ω:
∂h

∂n
= 0, h

∂Δh

∂n
= γ

∂θ

∂n
, (x1, x2) ∈ ∂ω. (2.2)

The first of these is condition (1.11) written in the new variables. The second condition (2.2) is derived in [1].
This condition follows from the impermeability of the surface Σ. Relations (2.1) and (2.2) are supplemented by the
condition for the dimensionless liquid volume: ∫

ω

h(x1, x2) dω = S (2.3)

(S is the surface area of the region ω). It is equivalent to condition (1.12) if the ratio of the dimensional volume Q

to the cross-sectional area of the film is chosen as the small parameter ε.
A remarkable feature of the problem considered is that the shape of the free surface of the film is determined

by solving problem (2.1)–(2.3) in the lack of detailed information on the dependence of the velocity on the vertical
coordinate x3. This differs the problem of the motion of a free film under the action of thermocapillary forces differs
from the classical problem of the motion of a thin viscous liquid layer adjacent to a solid plane. If the function
h(x1, x2) is determined, the velocity field in the film is found by solving the boundary-value problem in a fixed
region formulated in [1].

Let us formulate problem B in the thin-layer approximation. In this problem, the temperature of the liquid
T is not specified, but, by virtue of condition (1.9), its dependence on the vertical coordinate is weak and, to
within terms of order ε, it can be ignored. We make the additional assumption of smallness of the Peclet number
Pe = V l/χ, which allows Eq. (1.3) to be reduced to the Laplace equation Δ3T = 0 by ignoring the nonlinear term
in this equation. Setting T = T (x1, x2) and integrating the last equation over the variable x3 from zero to h(x1, x2)
subject to condition (1.9) and the symmetry conditions, we obtain the equality

∇ · (h∇T ) = 0. (2.4)
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We note that the assumption Pe � 1 is equivalent to the condition of smallness of the Reynolds number for
liquid film motion if the Prandtl number for the liquid is of the order of unity. The latter condition underlies many
approximate models of film flows.

The boundary condition for Eq. (2.4) follows from condition (1.8) in which the function g can be considered
independent of the variable x3. Then,

h
∂T

∂n
= q(x), (x1, x2) ∈ ∂ω. (2.5)

The necessary solvability condition for the Neumann type problem (2.4), (2.5) is specified by the equality∫

∂ω

q ds = 0, (2.6)

where ds is a length element of the curve ∂ω.
The second equation of the system for the functions h and T has the form of (2.1) in which the right side

contains ΔT instead of the known function Δθ:

∇ · (h∇Δh) = γΔT. (2.7)

The boundary conditions for (2.7) are similar to (2.2):

∂h

∂n
= 0, h

∂Δh

∂n
= γ

∂T

∂n
, (x1, x2) ∈ ∂ω. (2.8)

Finally, the problem in the thin-layer approximation is formulated as follows: to find a solution h, T of system
(2.4), (2.7) in the region ω such that conditions (2.3), (2.5), and (2.8.) are satisfied. Below, a problem (2.3)–(2.8)
will be called a coupled problem. Problem (2.1)–(2.3), which contains the single required function h, will be called
an uncoupled problem. We note that by the physical meaning, the function h(x1, x2) cannot take negative values
in the region ω.

The limits of applicability of the approximation considered are discussed in [1]. Let g = const be the
acceleration of gravity and d = (2σ0/(ρg))1/2 be the capillary constant. The effect of gravity on the equilibrium
shape of a nonisothermal film is insignificant if h � d ∼ l. This inequality provides the upper estimate for h. The
lower estimate of the quantity h is h � η, where η is the characteristic thickness of the double electric layer. If the
last inequality is satisfied, the action of the wedging pressure can be ignored.

We introduce the dimensionless parameter m = ρgβh2/κ, where β is the volumetric thermal-expansion
coefficient of the liquid. For m � 1, the contribution of buoyancy forces to the formation of the film profile
and the velocity field in it can be ignored. As an example, we consider a pure water film under reduced gravity
(g = 1 cm/sec2) at a temperature of about 298 K. In this case, d = 12 cm. If we set h = 0.1 cm, l = 5 cm,
η = 10−6 cm, the inequalities η � h � l are satisfied as well as the inequality m � 1 (in this case, m = 1.6 · 10−5).
Under normal gravity d = 0.38 cm, the required inequalities are satisfied if l ∼ 0.5 cm and h ∼ 0.05 cm

3. Uncoupled Problem (General Case). If γ = 0 in Eq. (2.1), the unique solution of problem (2.1)–(2.3)
is h = 1. This statement is proved by multiplying Eq. (2.1) by Δh and integrating the resulting equality over the
region ω subject to boundary conditions (2.2) and (2.3).

We assume that the parameter γ is sufficiently small. Then, it is reasonable to seek a solution of problem
(2.1)–(2.3) in the form of the power-law series

h = 1 +
∞∑

k=1

γkhk(x1, x2). (3.1)

The function h1 is a solution of the boundary-value problem

ΔΔh1 = Δθ, (x1, x2) ∈ ω; (3.2)

∂h1

∂n
= 0,

∂Δh1

∂n
=

∂θ

∂n
, (x1, x2) ∈ ∂ω; (3.3)

∫

ω

h1 dω = 0. (3.4)
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The functions hk (k = 2, 3, . . .) are determined sequentially as solutions of the problems

ΔΔhk = −∇ ·
( k−1∑

i=1

hi∇Δhk−i

)
, (x1, x2) ∈ ω; (3.5)

∂hk

∂n
= 0,

∂Δhk

∂n
= −

k−1∑
i=1

hi
∂Δhk−i

∂n
, (x1, x2) ∈ ∂ω; (3.6)

∫

ω

hk dω = 0. (3.7)

Next, it is assumed that the curve ∂ω belongs to the Hölder class C4+α (0 < α < 1) and the function
θ(x1, x2) to the Hölder class C2+α(ω̄ ). This provides the classical solvability of problems (3.2)–(3.7). Problem
(3.2), (3.3) reduces to the Neumann problem for the Poisson equation

Δh1 = θ − θ̄, (x1, x2) ∈ ω,
∂h1

∂n
= 0, (x1, x2) ∈ ∂ω, (3.8)

where θ̄ is the average value of the function θ in the region ω. By virtue of the additional condition (3.4), the
function h1 is determined uniquely.

We note that each of problems (3.5), (3.6) is an analog of the Neumann problem for the inhomogeneous
biharmonic equation. The necessary solvability condition for this problem is given by the equality

∫

∂ω

k−1∑
i=1

hi
∂Δhk−i

∂n
ds = 0 (k = 2, 3, . . .). (3.9)

For problem (3.2), (3.3), the solvability condition is satisfied automatically. It turns out that it is also satisfied for
problems (3.5) and (3.6) for any k = 2, 3, . . . . To prove this, it is sufficient to substitute expression (3.1) into the
equality following from (2.2) ∫

∂ω

h
∂Δh

∂n
ds = γ

∫

∂ω

∂θ

∂n
ds

and to equate the coefficients at all powers of the parameter γ to zero using the second condition (3.6). If the
solvability condition (3.9) and the earlier formulated smoothness conditions are satisfied, each of problems (3.5)
and (3.6) has a solution hk ∈ C4+α(ω̄ ), which is determined to within an additive constant. The arbitrariness that
arises in the solution is eliminated by using condition (3.7). The convergence of series (3.1) in the norm of the space
C4+α(ω̄ ) for sufficiently small γ is proved by a standard method using Schauder estimates of the solutions of the
biharmonic equation.

We consider an approximate solution of problem (2.1)–(2.3) for the case where the region ω is a unit circle
and the function θ is a simple harmonic polynomial: θ = x1x2. Because θ is harmonic, Eq. (2.1) is homogeneous and
the effect of thermocapillary forces on the deformation of the film is manifested only through the second boundary
condition (2.2). Transforming to the polar coordinates (r, ϕ) on the plane x1, x2 and solving problems (3.2)–(3.7)
sequentially, we obtain

h1 =
1
24

(r4 − 2r2) sin 2ϕ,

h2 =
1

384

[
− 1

48
r8 +

1
9

r6 − 1
4

r2 +
7
90

+
( 1

30
r8 − 11

50
r6 +

79
300

r4
)

cos 4ϕ
]
.

(3.10)

Estimating the maximum values of the modules of the functions h1 and h2 in the circle r � 1, we obtain
max |h1| = 1/24 ≈ 4.17 ·10−2 and max |h2| ≈ 4.13 ·10−4. This gives hope that the approximate solution of problem
(2.1)–(2.3) h(3) = 1 + γh1 + γ2h2 approximates its exact solution well, at least, for values of the parameter γ of the
order of unity.

We consider a pure water film 0.05 cm thick and 0.5 cm in diameter at room temperature. In this case, the
value γ = 1 corresponds to a temperature drop at its edges of δT = 3.64 K. Formulas (3.10) show that for the given
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temperature distribution θ = (r2 sin 2ϕ)/2 and the values of γ ∼ 1, considerable deformations of the film profile are
concentrated near its boundaries. Thus, if γ = 2, the deviation of the film thickness in the circle r � 0.8 from its
average value h̄ = 1 does not exceed 0.08. It is of interest to calculate the expression γΔ(h1 + γh2) = H(2), which,
in the thin-layer approximation, approximates the average film curvature. According to (3.1) and (3.10),

H(2) =
γ

2
r2 sin 2ϕ +

γ2

48

[
− 1

6
r6 +

1
2

r4 − 1
16

+
(1

5
r6 − 11

20
r4

)
cos 4ϕ

]
.

From this it follows that the largest values of the function |H(2)(r, ϕ)| are reached on the circle r = 1. If γ � 2,
then max |H(2)| < 1.023.

We note that for sufficiently small values of γ, the solution h(x1, x2) of problem (2.1)–(2.3) is positive in
the closed region ω̄. As γ increases, this property can be lost. The one-dimensional versions of the problem
corresponding to the cases where ω is a circle and the function h is radially symmetric or ω is a strip |x1| < const
(in this case, ω does not depend on x2) were studied in [1]. It was shown that for 4θ = −(x2

1 + x2
2) ≡ −r2 (or

2θ = −x2
1) there exists γ∗ such that h = 0 at the point r = 0 (or x1 = 0) whereas in the remaining part of the

region ω, we have h > 0. It was established that in the axisymmetric case, γ∗ ≈ 32.4 and in the plane case,
γ∗ ≈ 39.2. Approximate solution of problem (2.1)–(2.3) in the case where ω is a unit circle and 2θ = r2 sin 2ϕ

provides a rough estimate of the values of the parameter γ for which a positive solution of this problem still exists:
γ < 24. The following hypothesis seems plausible. Let Δθ = −1 in the region ω and ∂θ/∂n < 0 on its boundary.
Then, there exists a value γ∗ > 0 such that for γ > γ∗ there is no positive solution of problem (2.1)–(2.3). Proving
this hypothesis is a rather complicated problem of the theory of degenerating quasilinear elliptic equations.

4. Uncoupled Problem (Axisymmetric Case). We assume that ω is a circle and θ = −r2/4. We seek
axisymmetric solutions of problem (2.1)–(2.3) h = h(r). Then, Eq. (2.1) admits single integration. Taking into
account the second boundary condition (2.2), we obtain the following problem:

h
d

dr

[1
r

d

dr

(
r
dh

dr

)]
= −γr, 0 < r < 1; (4.1)

h and
d2h

dr2
are bounded,

dh

dr
→ 0 as r → 0; (4.2)

dh

dr
= 0 for r = 1; (4.3)

1∫

0

rh(r) dr =
1
2
. (4.4)

The plane analog of problem (4.1)–(4.4) is written as

h
d3h

dx3
= −γx, 0 < x < 1; (4.5)

dh

dx
= 0 for x = 0 and x = 1; (4.6)

1∫

0

h(x) dx = 1. (4.7)

Equation (4.4) can be integrated again:

h
d2h

dx2
− 1

2

(dh

dx

)2

= −1
2

γx2 + ζ. (4.8)

The integration constant ζ is a functional of the solution of problem (4.5)–(4.7). In [1], it is proved that problem
(4.5)–(4.7) has at least one positive solution if 0 � γ < 9. If γ < 9(1 − π−3/2)2, this solution is unique. For
sufficiently large values of γ, the problem has no positive solutions. Although the upper estimate of the admissible
range of the parameter γ found in [1] is five orders of magnitude larger than the real value obtained numerically:
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0 � γ < γ∗ ≈ 39.2. This result is of fundamental importance. Below, the same result is obtained for the solutions
of problem (4.1)–(4.4).

In relations (4.1)–(4.4), we transform to the new independent variable t = r2 and the new required function
u(t) = h(r). The function u is a solution of the following boundary-value problem:

u(tu′)′′ = −a, 0 < t < 1; (4.9)

u, u′, u′′ are bounded as t → 0; (4.10)

u′ = 0, t = 1; (4.11)

1∫

0

u dt = 1. (4.12)

Here a = γ/4; the prime denotes differentiation with respect to t. A solution of Eq. (4.9) that satisfies conditions
(4.10) will be called a regular solution. It is required to obtain a priori estimates of the regular positive solution of
problem (4.9)–(4.12) for a > 0.

We denote u′′ = p. The function p(t) satisfies the equation tp′ + 2p = −au−1. Let u be a regular positive
solution of problem (4.9)–(4.12). Then, for the solution of the last equation, which is bounded as t → 0, the
following representation is valid:

p(t) = − a

t2

t∫

0

xdx

u(x)
.

This implies that u′′ < 0 for all t ∈ [0, 1]. Integrating the last equality from t to 1 and using condition (4.11), we
obtain the representation

u′(t) = a

1∫

t

( s∫

0

xdx

u(x)

)ds

s2
.

From this it follows that for any regular positive solution u(t) of problem (4.9)–(4.12), the inequality u′ > 0 holds
if 0 � t < 1.

We denote u′′′ = q. Dividing Eq. (4.9) by u and differentiating the resulting equality, we obtain the equation
tq′ + 3q = au−2u′. We note that for any regular solution of Eq. (4.9) the function tu′′′(t) has a finite limit as t → 0.
This allows us to obtain the following representation for the function q by integrating the last equation from t = 0
to the current value of t:

q(t) =
a

t3

t∫

0

u′(x)x2 dx

u(x)
.

By virtue of the positiveness of u and u′ for t ∈ [0, 1) and the definition of the function q, it can be concluded that
u′′′(t) > 0 for all t ∈ [0, 1].

Next, a priori estimates of the solution of problem (4.9)–(4.12) are needed. The simplest of them is obtained
by integrating Eq. (4.9) from 0 to 1 subject to boundary conditions (4.10) and (4.11):

u(0)u′(0) − u(1)u′′(1) +
1
2

1∫

0

[u′(t)]2 dt = a. (4.13)

We note that u(1)u′′′(1) + 2u(1)u′′(1) = −a by virtue of Eq. (4.9). Since u′′′(1) > 0, this implies the inequality

u(1)u′′(1) < −a/2. (4.14)

Taking into account that u(0)u′(0) is positive, from (4.13) and (4.14), we obtain the estimate
1∫

0

[u′(t)]2 dt < a. (4.15)
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Inequality (4.15) provides bilateral estimates of the function u. Indeed, by virtue of condition (4.12), a point
t1 ∈ [0, 1] exists such that u(t1) = 1. This allows the function u to be represented as

u(t) = 1 +

t∫

t1

u′(x) dx.

This relation and Eq. (4.15) lead to the estimates 1 − [a|t − t1|]1/2 < u(t) < 1 + [a|t − t1|]1/2.
Strengthening the upper estimate, we find that for a > 0,

u(t) < 1 + a1/2, 0 � t � 1. (4.16)

The lower estimate can also be strengthened:

u(t) > 1 − a1/2, 0 � t � 1, (4.17)

but, unlike (4.16), this estimate is informative only for a < 1. Nevertheless, it allows one to prove the solvability
of problem (4.1)–(4.4) for small values of the parameter γ = 4a. Such a proof is given in [1] but the guaranteed
interval of existence of the solution of the problem is not indicated. Based on estimate (4.17), it can be argued
that a positive solution of problem (4.1)–(4.4) necessarily exists if γ < 4. For even smaller values of γ, the positive
solution is unique (a proof of this fact is not given here).

We prove that for large values of a, problem (4.9)–(4.12) has no positive solutions. In contrast to Eq. (4.5),
Eq. (4.9) does not admit integration. Therefore, the approach proposed in [1] cannot be used directly to prove the
failure of the solution of problem (4.5)–(4.7) for sufficiently large big γ. However, the certain similarity between
both problems suggests the correct line of reasoning. [We note that the order of Eq. (4.9) can be reduced because
it is invariant under the stretching transformation t̃ = ct, ũ = c2u, but this circumstance does not help obtain the
desired result.]

In Eq. (4.9), we transform to the new required function v = u1/2. The function v(t) satisfies the equation

v′′ =
f(t)
2tv3

− v′

tv2
, (4.18)

where

f(t) = −at + a + u(1)u′′(1) − 1
2

1∫

t

[u′(x)]2 dx. (4.19)

Using representation (4.19) and inequality (4.14), it can be concluded that the function f admits the upper estimate

f(t) < −a(t − 1/2), 0 � t � 1. (4.20)

In this case, it is of significance that for t > 1/2, the function f takes negative values.
We integrate Eq. (4.18) from t � 1/2 to 1, taking into account that v′(1) = 0 by virtue of condition (4.11)

and the definition of v. As a result, we obtain

v′(t) =

1∫

t

(
− f(x)

2xv3(x)
+

v′(x)
xv2(x)

)
dx. (4.21)

The further reasoning is based on finding the lower estimate of the function v that, for large values of a, leads
to a contradiction with condition (4.12). For this purpose, we estimate the integrand in (4.21) from below using
inequality (4.20), v′ = 2uu′ > 0, and the inequality v < (1 + a1/2)1/2, which follows from (4.16). As a result, we
find

v′(t) >
a

2(1 + a1/2)3/2

1∫

t

(
1 − 1

2x

)
dx =

a

2(1 + a1/2)3/2

(
1 − t +

1
2

ln t
)
,

1
2

� t � 1.

Integration of the obtained inequality from t = 1/2 to the current value of t gives the desired estimate

v(t) >
aη(t)

2(1 + a1/2)3/2
+ v

(1
2

)
,

1
2

� t � 1, (4.22)
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where

η(t) =
1
2

(
t − t2 + t ln t +

1
2

ln 2 − 1
4

)
.

The function η(t) possesses the following properties: 1) η(1/2) = 0; 2) η(t) increases strictly for t ∈ (1/2, 1]. This
implies that

1∫

1/2

η2(t) dt = C > 0.

Using inequality (4.22) and taking into account the definition v = u1/2 and the positiveness of v(1/2), it can be
concluded that

1∫

1/2

u(t) dt >
C2a2

4(1 + a1/2)3
.

It is obvious that for the positive solutions of problem (4.9)–(4.12), the last inequality contradicts condition (4.12) if
a is sufficiently large. This implies that for large values of the parameter γ = 4a, the original axisymmetric problem
has no positive solutions.

5. Coupled Problem (General Case). This problem consists of determining a pair of functions h and T

that satisfy Eqs. (2.4) and (2.7) in the region ω ∈ R
2, boundary conditions (2.5) and (2.8) on its boundary ∂ω, and

the additional condition (2.3). The controlling functional parameter of the problem is the function q that specifies
the heat flux distribution on the curve ∂ω. This function is subject to the necessary condition (2.6). In this case, the
function T in the solution of problem (2.3)–(2.8) is not uniquely determined. The arbitrariness in its determination
can be eliminated by requiring that the following condition be satisfied:∫

ω

T (x1, x2) dω = 0. (5.1)

Next, it is assumed that condition (5.1) is satisfied.
By analogy with the uncoupled problem (2.1)–(2.3)–(2.8), the solution of problem (2.3) can be sought in the

form

h = 1 +
∞∑

k=1

γkhk(x1, x2), T =
∞∑

k=0

γkTk(x1, x2). (5.2)

The functions T0 and h1 constitute the solution of the following problem:

ΔT0 = 0, ΔΔh1 = 0, (x1, x2) ∈ ∂ω; (5.3)

∂T0

∂n
= q,

∂h1

∂n
= 0,

∂Δh1

∂n
= q, (x1, x2) ∈ ∂ω; (5.4)

∫

ω

T0 dω = 0,

∫

ω

h1 dω = 0. (5.5)

The functions Tk and hk+1 (k = 1, 2, . . . ) are found from the recursive system of equations and boundary conditions:

ΔTk = −∇ ·
( k∑

i=1

hi∇Tk−i

)
,

ΔΔhk+1 = ΔTk −∇ ·
( k∑

i=1

hi∇Δhk+1−i

)
, (x1, x2) ∈ ω;

(5.6)

∂Tk

∂n
= −

k∑
i=1

hi
∂Tk−i

∂n
,

∂hk+1

∂n
= 0,
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∂Δhk+1

∂n
=

∂Tk

∂n
−

k∑
i=1

hi
∂Δhk+1−i

∂n
, (x1, x2) ∈ ∂ω;

(5.7)

∫

ω

Tk dω = 0,

∫

ω

hk+1 dω = 0. (5.8)

We assume that the curve ∂ω belongs to the Hölder class C4+α (0 < α < 1) and the function q to the
Hölder class C1+α(∂ω). Then each of problems (5.3)–(5.5) and (5.6)–(5.8) has a unique solution Tk ∈ C2+α(ω̄ ),
hk+1 ∈ C4+α(ω̄ ) (k = 0, 1, 2, . . .). If the parameter γ > 0 is sufficiently small, series (5.2) converge, in the norms of
the spaces C4+α(ω̄ ) and C2+α(ω̄ ), to the functions h and T , respectively, that constitute the solution of problem
(2.3)–(2.8).

We note that the function T0 is harmonic. This allows us to compare the solution of the uncoupled problem
considered in Sec. 3 with the solution of the coupled problem in the case where ω is a unit circle and q = sin 2ϕ (we
recall that r and ϕ are polar coordinates). With this specification of the function q, the equality θ = T0 is satisfied.
The coincidence of the functions θ and T0 is responsible for the equality of the functions h1 in the solutions of both
problems. However, because of the film deformation, the next terms of the temperature expansion (5.2) are not
harmonic functions. Calculations show that in the case q = sin 2ϕ

T1 =
1

288
r6 +

1
96

r4 − 1
384

+
( 1

480
r6 − 1

30
r4

)
cos 4ϕ.

We note that the functions h1 and T0 constituting the solution of problem (5.3)–(5.5) are linked by the relation
Δh1 = T0. From this it follows that the function h2 obtained by solving problem (5.6)–(5.8) for k = 1 differs from
the function h2 defined by the second formula (3.10) only by a factor of 2.

6. Coupled Problem (Plane Case). Below, we study the solutions of system (2.4), (2.7) in which the
functions h and T depend only on one variable x1 = x. These solutions describe the equilibrium of a nonisothermal
film bounded by the planes x = 0 and x = 1 provided that its free surface is thermally insulated and that a heat
flux with a constant dimensionless density q is specified on the solid boundaries. In this case, Eqs. (2.4) and (2.7)
are integrated to yield the system

h
...

h = γṪ + d, hṪ = q,

where the dot denotes differentiation with respect to x and d is constant. By virtue of the second boundary condition
(2.8), d = 0. Eliminating the function Ṫ from the relations obtained, we arrive at the following equation for the
film thickness h:

h
...

h = −bh−1, 0 < x < 1, (6.1)

where b = −γq. Boundary conditions (2.3) and the first of conditions (2.8) in the one-dimensional case become

ḣ(0) = ḣ(1) = 0; (6.2)

1∫

0

h(x) dx = 1. (6.3)

We note that without loss of generality, the number b can be considered nonnegative. The case b < 0 is reduced to
the case b > 0 by the substitution x̃ = 1 − x.

If b = 0, the unique solution of problem (6.1)–(6.3) is h = 1. For small b, its solution has the asymptotic
form

h = 1 + b
(
− 1

24
+

1
4

x2 − 1
6

x3
)

+ O(b2), b → 0. (6.4)

From (6.4) it follows that for small b, the function h(x) increases strictly monotonically and has a unique
point of inflection. These qualitative properties of the solution are retained for large values of the parameter b. The
existence of more than one point of inflection is impossible because

...

h < 0 for positive solutions of problem (6.1)–
(6.3). The same inequality implies that the function ḧ(x) decreases strictly. If ḧ(0) � 0, the condition ḣ(1) = 0
cannot be satisfied. Thus, ḧ(0) > 0, which leads to a monotonic increase in the function h(x) for any value b > 0.
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The positiveness of b implies that the temperature decreases with increasing x whereas the film thickness
increases. This is natural since the surface-tension coefficient (1.1) increases as the temperature decreases. In
addition, the film thickness at the heated end h(0) decreases with increasing parameter b. For small values of b, this
follows from formula (6.4). Is of interest to elucidate whether for the positive solution h(x) of problem (6.1)–(6.3),
the quantity h(0) can vanish for any value of the parameter b > 0. For this, we study the behavior of the solutions
of Eq. (6.1) such that h(x) → 0 as x → 0.

In Eq. (6.1), we transform to the new independent variable s and the new required function z using the
formulas

h = exp s, ḣ = z(s). (6.5)

The function z(s) satisfies the second-order equation

z2
(d2z

ds2
− dz

ds

)
+ z

(dz

ds

)2

= −b. (6.6)

For Eq. (6.6), we consider the Cauchy problem

z = c,
dz

ds
= 0 at s = s∗, (6.7)

where s∗ = log h(x∗); c = ḣ(x∗), and x∗ is the value of x for which the function ḣ(x∗) takes the largest value. We
note that for b > 0, this value is unique and 0 < x∗ < 1. In addition, c > 0. The substitution(

z
dz

ds

)2

= w(z) (6.8)

reduces Eq. (6.6) to the first-order equation (dw

dz
+ 2

)2

= z2w, (6.9)

which is equivalent to the two equations
dw1

dz
= −2 − zw

1/2
1 ; (6.10)

dw2

dz
= −2 + zw

1/2
2 . (6.11)

The functions w1 and w2 cannot take negative values by virtue of their definition. For Eqs. (6.12) and (6.13),
we consider the Cauchy problems

wk(c) = 0, k = 1, 2. (6.12)

The right sides of Eqs. (6.10), (6.11) lose smoothness at the point z = c, wk = 0. However, both Cauchy problems
(6.10), (6.12) and (6.11), (6.12) have unique solutions defined in the left half-neighborhood of the point z = c. Of
interest is the solution of the first of the indicted problems.

The integral curve of Eq. (6.10) that leaves the point z = c, w1 = 0 is above the straight line w1 = 2b(c− z).
Since the right side of this equation increases sublinearly along the variable w1, the solution of the Cauchy problem
(6.10), (6.12) can be continued to the point z = 0; w1(0) > 2bc if b > 0, and the following inequality holds:

w1 > 2b(c− z), 0 < z < c. (6.13)

If the solution of problem (6.10), (6.12) is known, the function s1(z) can be defined by the relation

s1(z) = −
c∫

z

ζ dζ

[w1(ζ)]1/2
+ s∗, 0 � z � c. (6.14)

Knowledge of this function allows us to find the parametric dependence h(x) on the interval 0 � x � x∗ using
relations (6.5) and (6.8). By virtue of (6.5), (6.13), and (6.14), the following a priori estimate is valid:

h(0) > h(x∗) exp {−23/23−1b−1/2[ḣ(x∗)]3/2}, b > 0. (6.15)

From this estimate, it follows that for any finite value of b > 0, the quantity h(0) is positive. Violation of inequality
(6.15) implies that ḣ(x∗) → ∞ as x → x∗ but this is impossible by virtue of Eq. (6.1) since h(x∗) > 0.
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Estimate (6.15) yet does not allow one to prove that problem (6.1)–(6.3) is solvable for any value b > 0 but
it may be useful in the numerical solution by continuation over the parameter b. The question of the solvability of
problem (6.1)–(6.3) for all positive b needs to be further investigated, both analytically and numerically.

In conclusion, we emphasize again that in the present paper, by the equilibrium of a free nonisothermal
film is meant its stationary shape and the stationary velocity and temperature fields in the film. In the thin-layer
approximation, these two problems (determining the equilibrium film shape and finding the velocity and temperature
fields) are solved sequentially. The present paper is devoted to the first of these problems. The second problem is
formulated in [1], where its approximate solution is given for small values of the Marangoni number provided that
the film shape is known.
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